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On Boltzmann and Landau equations

By P. L. Lioxs

Ceremade, Universite Paris-Dauphine, Place de Lattre de Tassigny,
76775 Paris Cedex 16, France

We present here various compactness properties enjoyed by global solutions of the
so-called Boltzmann and Landau equations. These properties, which are crucial for
the existence of global solutions, are shown to depend heavily on the structure of the
collision operators.

1. Introduction

We study here some properties of solutions of the following kinetic equations
offot+v-V,f=Q(f.f) fort=0,zeRY, veR", (1)

where N> 1, f is a non-negative function and Q(f,f) is a non-local, quadratic
operator. Physically, such equations provide a mathematical model for the statistical
evolution of a large number of particles interacting through ‘collisions’. They are
used for the description of a moderately rarefied gas or of plasmas. The unknown
function f corresponds at each time ¢ to the density of particles at the point @ with
velocity v. If the operator ¢ were 0, (1) would simply mean that the particles do not
interact and f would be constant along particle paths (¢ = v, ¥ = 0). This conservation
no longer holds if collisions occur, in which case the rate of changes of f has to be
specified. Such a description was introduced by Maxwell (1886, 1890) and Boltzmann
(1872) and involves an integral operator described below. This model is derived under
the assumption of stochastic independence of pairs of particles at (x, ¢) with different
velocities (molecular chaos assumption). For further detail on the derivation of this
model (Boltzmann collision operator), we refer the reader to Chapman & Cowling
(1952), Grad (1958), Cercignani (1988), Truesdell & Muncaster (1960) and the
references therein.

To explain the mathematical results we shall present here, we need to detail the
structure of Boltzmann collision operator B. If ¢ is a smooth function (say @€
CR(R™)) of v then Q(p, ) is a function of v given by

0= | o] | a0l e Be=ry.0) @)

where v = v— (0=, W) ©, Vy = v+ (V—0v,, 0) 0, and we denote by a-b or (a,b) the
scalar product in RY. The collision kernel B depends on the nature of the interaction
between particles and always satisfies at least

B >0, Bz, w)isa function of |2|, |(z, w)| only. (3)

It is worth recalling the significance of the velocities v,vy,v", v, 0", v, are the
velocities of two ‘colliding’ particles before a collision that will bring them to have
velocities v,v,. Elastic collisions must obey the conservation of momentum and
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192 P. L. Lions

kinetic energy (v+wvy = v +0, [0>+|vel? = [v/*+|vil?) and the formula written
above for v" and v} are a description of all possible solutions of these two balance
laws.

Of course, Q(f,f) in (1) means Q(f(¢, =, "), f(t,,")), provided such a quantity makes
sense or in other words provided the integrals in (2) make sense first for a smooth ¢
and next for a solution of (1). The second part of this difficulty is of course related
to a priori estimates and regularity informations on the solutions. But, even the first
part is a serious mathematical issue since realistic collision kernels B can be rather
singular as we explain now. Indeed, if the so-called hard-spheres model where
B(z,w) = |(z, w)| does not present real singularities, for inverse power intermolecular
potentials, B takes the following form

B(z,0) = b(0) ]2 with y=1—2(N—1)(s—1)"

where s > 1 is the exponent of the potential, 6 is the angle between v — v* and  so
that cos @ = (v—v,,w) [v—v,|™. In addition, b is smooth except at 0 = +1in where it
has a singularity of the form |cos O|7* with o = (s+ 1) (s—1)"1if N = 3. In other words,
B presents singularities of an arbitrary high order when (v —v,, w) = 0, condition that
corresponds to the so-called grazing collisions. A classical approach consists in
avoiding this difficulty, neglecting thus grazing collisions, and one simply truncates
b assuming for instance

BeLl (RY x S¥1)

(see Grad 1958; Cercignani 1988; Truesdell & Muncaster 1960).

On the other hand, when almost all collisions are grazing, phenomenological
arguments introduced by Landau (see Lifschitz & Pitaerskii 1981) and by Chapman
& Cowling (1952) lead to another collision operator

0t =5l | aveagto—on)| o0 L2 L)) o

av* y

in which case (1) becomes the Landau equation (it also called the Fokker—Planck
equation). The matrix (a;(z)) is symmetric, non-negative, even in z and is typically
of the following form if N = 3,

az] /Izl {817 2 Zj/|2|2}, (6)

where a is even, smooth (for 1nstance) and positive on RY. In (5) and everywhere
below, we use the standard convention of implicit summation over repeated indices.

Justifications of the collision operator given in (5) can be found in Desvillettes
(1994) (through an asymptotic expansion of Boltzmann collision operators with
small parameters) and in Degond & Lucquin-Desreux (1994) (via an expansion of a
physically realistic Boltzmann collision operator around grazing collisions). These
works strongly suggest that, in addition to the intrinsic interest in Landau equation,
some insight on the Boltzmann equation when one does not make the angular cut-
off might be gained by an analysis of the Landau model.

This is precisely our goal here and we shall prove that solutions of the Landau
equation enjoy a rather striking compactness property and that this property does
not hold for the Boltzmann equation with angular cut-off.

Let us mention at this stage that compactness properties of solutions of nonlinear
partial differential equations are often a replacement for regularity results (that seem
out of reach) and play a fundamental role in global existence results. Even if we are

Phil. Trans. R. Soc. Lond. A (1994)
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On Boltzmann and Landaw equations 193

not concerned here with existence issues, we would like to mention that this type of
compactness properties is one of the key ingredients in the results by DiPerna &
Lions (1989a, 1991) on the global existence of weak solutions for the Boltzmann
equation with general initial conditions and general collision kernels B with angular
cut-off (see also DiPerna & Lions (1988a, 19895) for results concerning related kinetic
models). References to previous work on Boltzmann equations can be found in
DiPerna & Lions (1989a).

In §2 below, we state our main compactness result for the Landau model: we prove
that sequences of solutions with natural bounds are compact in L?(0,7'; L*(R*"))
(V1< p < 0,¥7Te(0,0)). And we recall a weaker compactness result for solutions of
the Boltzmann equation with angular cut-off, a result shown in DiPerna & Lions
(1989 a). Finally, we also show that the result for the Landau model does not hold for
the Boltzmann equation with angular cut-off. The proofs are given in §3. We will also
mention in §3 how the method of proof also yields some apparently new results on
linear equations in cases which are related but more general than some typical
hypoelliptic equations.

2. Compactness results

We shall consider a sequence of solutions (f"), of (1) corresponding to a sequence
(fo), of initial conditions. We shall assume natural bounds which are straightforward
consequences of the following formal identities that hold for solutions of (1) in the
case of Boltzmann collision operators (2) or Landau collision operators (5). For any
solution f of (1) (in these two cases), we have at least formally

JJ frdxdv isindependent of ¢ for yr =1, v,(1 <j<N), o, [x—ot]®.  (7)
In addition,
JJ flogfdxdv is non-increasing with respect to ¢. (8)
RZN

In fact, a more precise formulation of (8) is the following formal identity

d 1 .
&fjﬂwflogfdx dv +Z ffffdx dvdv, doB(f'fi.—ffs) logj;?{** =0, (9)

where f, = f(t,x,vy), f =ft,x,v), fi=f(t,x,v}), in the case of the Boltzmann
model. For the Landau model, (9) is replaced by

d 1 0 0
affﬁwflogfdxdv+§fffdxdvdv* @y (v—y) ﬁ*( o, (logf) av*yz_(logf*))

0
X (a}; (logf)—

0
Slogfu)) = 0. (10

These conservations or identities lead to the following ‘natural’ bounds that we
assume throughout this paper

sup{ff S+ |x— vt|2+|v|2+|10gfn|]dxdv}<+oo (1)

nz1

Phil. Trans. R. Soc. Lond. A (1994)
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194 P. L. Lions

let us also recall that f* > 0 on [0, 00) x RY x RY.

To avoid unnecessary technicalities, we simply assume that f* are smooth
solutions of (1) say C° with fast decay as (x,v) goes to infinity. In fact, the results
below hold for convenient weak solutions, i.e. renormalized solutions —a notion
introduced in DiPerna & Lions (1989a)—and for various approximations or
regularizations of (1). Finally, they can be used to deduce global existence results of
such weak solutions.

We begin with the Boltzmann model with angular cut-off.

Theorem 1. We assume that B satisfies for all Re (0, 00)

BelLl (R x §V-1), ” Bdzdw < Ch(1+]2%)
lz—¢ <R (12)

Vze RN for some Cp = 0.

Then, for each € L*(RY x RY), [ gn f™r dv is relatively compact in L7(0, T ; L*( RY)) for
all 1 <r < oo, Te(0,00).

Remarks. (i) This result is shown in DiPerna & Lions (1989a) with a slightly more
restrictive assumption on B and under another bound on f" namely a bound on the
dissipation of entropy that follows from (9)). This minor improvement is explained
in DiPerna et al. (1991).

(ii) The compactness stated in Theorem 1 is sufficient to pass to the limit in the
collision terms (and in the entropy inequality) as shown in DiPerna & Lions (1989a,
1991).

We next consider the Landau model and we recall that (a,;) is symmetric, non-
negative and even in z. In addition, we assume

for all Re (0, o0) there exists v > 0 such thatl

(13)
ay(2) iy = vl if gz = 0, 2] < J
E‘)a 02
1 0 . o0
ayel +L”; az T jeM+L*, (14)

where .# denotes the space of bounded measures on RV,

For instance, if N > 3, a;(z) (2)/121%) {8,y —2;2;/|2|*}, where 0 <O <K N—2, a is
smooth (say in W (RN)) and p0s1t1ve on RY, (13) and (14) hold. Notice that when
0=N—-2a=1,

aZ
.07, &, ay; = —Cy 0y

Theorem 2. Under the assumptions (13) and (14), f" is relatively compact in

L0, T, LNREY,)) for all 1 <r < o0, Te(0, 00).

Remarks. (i) 1t is possible to improve a bit the assumption on 0%a,;/0z, 9z, allowing
‘singular integrals’ distributions but we will skip such a technical extensmn here.

(ii) If we do not make the assumption (13), then Theorem 1 still holds. Also,
Theorem 2 holds if we add the Boltzmann collision and the Landau collision
operators.

(iii) As we shall see in the proof, we also prove that a; f" is relatively compact in
Lll()(
Of course, it is then natural to ask whether Theorem 2 holds for Boltzmann models.

Phil. Trans. R. Soc. Lond. A (1994)
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On Boltzmann and Landaw equations 195

This remains an outstanding problem if we do not make the angular cut-off but if we
do then we have

Theorem 3. Under the assumption (12), the conclusion of Theorem 2 implies in fact
that f* is relatively compact in C([0,T]; L*(R3Y,)) and thus, in particular fi = f*(0) is
relatively compact in L'(R2Y).

Theorems 2 and 3 are shown in §3.

3. Proofs of Theorems 2 and 3

We begin with the proof of Theorem 2. The first step consists in writing the Landau
equation in renormalized form in the sense of DiPerna & Lions (1989a; see also
DiPerna & Lions (1988b) and Lions & Murat (1994) for similar formulations in the
case of equations involving second-order operators). Let feC?%[0, + ), R). We
clearly have for any (smooth) solution f of (1)

SRDFEVBI) = Q)

Next, if the collision operator ¢ is given by (5)

0 0 -
UL = F )yt =0
where Ty = J @y (v—vg) [y Aoy, b= J iaﬁ) (v—vy) fy do.
RV &V \0z;

Therefore, we have

_ of
U = oy BN =8B | D L Lvetpin) g,
62
where c= JRN o, az L (0—vy) fy dv.

In conclusion, we find for any solution of (1) and (5)

0

v,

SAUHEV A = ol ()= Ei)

B 15)

In particular, this equation holds for each f™ where @, b, ¢ are replaced by

ay = J (v —"24) [T (L, 2, vy) vy, 1
rN

Naz

5?=f e Lo —vy) [(E 2, v4) Aoy, (16)
R

%a,
6"=JRN&FZ],(U—U*)fn(t,x,v*)dU*‘ }

Phil. Trans. R. Soc. Lond. A (1994)
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196 P. L. Lions

To conclude this first step, we want to deduce a few simple bounds from (15). We
choose S(t) = t/(1+t) and we find

N A L L
n
—H UM, o0, =~ " w, o, (L1

Il

(™) == (f")
.7
where y(t) = (1—(1+1)73).
Therefore, if we multiply (15) by peCP(RY), ¢ >0 on RY and integrate over
[0,T)x RY x RY (for any fixed T'e€ (0, c0)), we obtain

Jdt” de dogits - 30, 1", )
” BU™ (T gpdxdv+f dt” dxdwpc{lijm IJ:;”}

4 )

We next want to prove that the three terms in the right-hand side are bounded. This
is clear for the first one in view of (11) since £(f™) < f". The second term is also
bounded since

N N B,
‘P1<1+f">2 S AT

is bounded in L*(0, co ; L®(RY; L* n L*(RY))) and in view of (14), " = cl*f +egx f",
where 0%a,;/0z,0z; = 1+ 0y and ¢, €M, c,e L™, hence c¢;xf" is bounded in L%(0, c0;
LY(R2Y)) Whlle c2jf” is bounded in L*(0, oo ; LY RY; Lw(RN))) in view of (11). The
same argument applies to the term

T
agp"n n
L dtJijNdxdva—vibi BUf™

using (14) again. The last we have to handle is

fdt” dedvg” wa/;gn
fdt” dedo L g ") fdtff dxdv—(pb” BU™).

And we show exactly as above, using (14), that each of those terms is bounded. In
conclusion, we obtain for each 7', R e (0, o0)

a n
supf dtj dxf dva,]a— )a—vj(y(f )) < o0, (17)

where By = {ze R"/|z| < R}.
Phil. Trans. R. Soc. Lond. A (1994)
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On Boltzmann and Landaw equations 197

The second step consists in showing that averages in v of f” and £(f") are compact
in L*((0,T) x Bg). We again write (15) with the choice # =t/(1+¢) we find for all n

4V AU = o O =B A

AR e LTI

We have shown above that b7 B(f"), e{B(f")—f'(f™)f™} are bounded in L®(0, co
LY(RY x Bg)) and that
oo
/! n i[L_____.___'
ﬂ (f )a’i]' avi avj

is bounded in L0, T'; L*(RY x By)) for all R, T'e€ (0, c0). We then want to show that

5 U™

is bounded in LY(0,7;LY(RY ><BR) for all R,Te(0,c0). Indeed, we have by
Cauchy—Schwarz inequality

1 0
g () zmw( o ) 457 )
g (a1 oy Y
( (47" av-avj)
1 a
zm,lf( 2oy o).
J

7w,
In view of (14), X, ;|a7| is bounded in L®(0, 0 ; L'(R}Y x By)) for all R€ (0, c0) and our
claim is proved using (17).
We deduce from all these bounds

(f")+EV, B = gz)+9 : (19)

where ¢g7(1 < ¢ < N), g" are bounded in Ll(O,T;Ll(Ri\’ x Bg)) for all R,Te€ (0, c0). In
addition, B(f") is obviously bounded in C([0, c0);L* n L*(R*N)). These bounds are
enough to ensure that for each pe CP(RY)

J . B(f")pdv is relatively compact in L*((0, 7)) x Bg) (20)
R

for all R, T'e(0, c0). This is a consequence of the general velocity averaging results
shown in DiPerna et al. (1991), extending the previous results due to Golse et al.
(1985, 1988), DiPerna & Lions (1986b). In fact, one can even show a Sobolev type
regularity for such averages. In view of (11) and the boundedness of 3, one sees that
(20) holds in fact for each pe L* + L*(R"). And as in DiPerna & Lions (1989a), we
can deduce from (20)

BA(f")xp is relatively compact in LY(0,T)x Bg X Bg) (21)
Phil. Trans. R. Soc. Lond. A (1994)
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198 P. L. Lions
for all R, T'e (0, ), pe L'+ L®(RY). In particular, if we introduce for § > 0, py(z) =
(1/6%) p(2/8), where pe C2(RY), Suppp < B,, p =0 in RY, [ pvpdz =1, we see that
(F1),, is relatively compact in L'((0,7T) X B X Bg) (22)
for all R,T'e(0,0), § >0, where FN = B(f"), F} = B(f")x p,.
Let us also remark that since
B0 = 1/(L+0) <702 = 1/(L+1)?
on [0, 00), (17) implies

n n
supf dtf de dvaz]aaF or < 0. (23)

We then want to show that (20) and (21) hold with ﬂ /™) replaced by f*. To this
end, we argue as in DiPerna & Lions (1989a) and observe that everything we did with
S is still true with g,(t) = ¢/(1+vt) for any v > 0. In particular (20), (21) hold with
B(f™) replaced by S,(f") (for all R, T'€ (0, c0) and for all pe L' N L*(RY)). But then we
notice that for each K > 1 there exists C > 0 sueh that

1B =" < Cvf™ 1f"<K+ oo i) logf .k

1
< ny __~ _fn n|
OK Vf +10gKf |10gf l
This allows to deduce, using (11), the following facts

f ffodv s relatively compact in L'((0, T") X By )} (24)
for all pe L= (RY),

J"s @ is relatively compact in L'((0,7') X Bp +Bp) 1

for all e L' + L*(RY). J

Let us finally point out that, using again (11), the L' compactness stated in (20) and
(24) holds in fact on (0,7) x RY for all T€ (0, c0).

We are now ready to show, in a third step, the relative compactness in L*((0, T) x

By x Bg) of F™ for all R, T'e (0, c0). We thus fix T'€ (0, o0), R,€ (0, c0) and we deduce
from (11), (20), (22), (24), (25) extracting subsequences if necessary, that

(25)

fr —*fweakly in L((0,7) x RZY), f>0a.e. (26)
g f" = ag —>aj*fae and in L'((0,7) X Bp x Bg ) (27)
p"—p a.e. and in L'((0,T) x By ) (28)

F§ —Fya.e. and in LP((0,T) x Bg ) (Vp < c0) (29)

n

for all 6 > 0, where R, = E,+ 1, where

p”=f J™do, p=f Sfdv.
RY RY
We will denote by @;; = ayxf.

Phil. Trans. R. Soc. Lond. A (1994)
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On Boltzmann and Landauw equations 199

Next, we want to analyse the positivity of the matrix a;. Let ue (0, 1), for all
neRYN, [yl = 1, we observe that (13) yields some v = v(u) > O such that

@yt @, v) 9, 7; 2 V(/‘)flvw,n)(v*)f(t,xyv*)d”* =v(p) p,(t,x,v,), (30)

where V(u,7) = {Jve| < (1—p)71, [(v—vy, )| < glv—24]}. Then, we observe that as
utl, Vip,n)t RN — v—l—R ;). Therefore, as u 11, p,(t,,v,9) 1 p(t,x). This implies, by
Dini’slemma and Lebesgue theorem, that p,—~ pas p— 1 uniformly inve By , ne SV,
ae x€Bp ,te(0,T)andin L'((0,T) X Bp ;C(Bg ><SN ). In particular, 1fwedenoteby

= {(¢, x) (0,T)x B, /p(t,x) > a} for a > 0, ‘we deduce from the Egorov theorem
tha’c for each e¢> O, there exists K, < K, with meas(#,) <i¢ such that on
(B¢ ﬂKa) X Bg x 8N, p, = fouif s close to 1, i.e. w€[uy(a,€),1). We then choose u
in that interval and remark that (30) obviously holds with @, replaced by a, f by f*
and p, by p;. Next, p; —, p, uniformly in

veBp,neS¥ 1 ae xeBy,te(0,7)
and in LY((0,7) xBRl; C’(BRIXSN—I)).

We may then apply again the Egorov theorem to deduce that there exists £, = K,
such that meas (H,) <3¢ and on (B°) x By x SN7!, p% > ja for n large enough (n >
ng(o, €)) where I/ = K, U K, so that meds (¥) < ¢. We have thus shown for all & > 0
and € > 0, the existence of a measurable set £ — K, such that meas (E) < ¢ and for
all (t,x)eE°NK,, for all ve By, eSSV

agt,x,v)n;m; =Zv >0 (31)
for some v = v(a, €), for n > ny(a,e).
Then, (23) implies for n > n,(a, €)
f dt owf do|V, F"2 < C(a,€). (32)
E°NK Bg
This bound implies in turn that we have for n > No(, €)

f dt da f do|F"—F}| < C(a, €) 2. (33)
E°nK, Bp,

We itidy iiow shiow that F is a Cauchy sequence in L*((0,T) X By , X Bg,). Indeed,
we have

f dt’dxf dvlF”—F’"|<J dtde' do(F"+ F™)
(0, T)XBg, Bg, Kﬁn((O,T)xBRI) B,

+J dtdxf dv(F"+F’”)+J dtdxj dv|F™ — F}|+ |F™ —F7|
E E°nK Bg,

+J' dtde do|F} —F}.
(0, T)XBp, XBp

Phil. Trans. R. Soc. Lond. A (1994)
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The first integral is bounded by

dtdxj Av(f" +f™),

fxg N (0, T)XBR))

QJ pdtdx
KSn (o, T)XBg,)

as n and m go to + oo, and this last integral is bounded by Ca where C' denotes
various positive constants independent of « and e.

The second integral is bounded by 2meas (Bp ) meas (£) < Ce. The third integral
is bounded for n,m = ny(a, €) by C'(e,€) § because of (33). And the fourth integral
goes to 0 and n, m got to + 0o because of (29). Collecting all those estimates, we find

which converges to

lim supf dtdxf do|F'" —F™ < Co+ Ce+C' (e, €) 6.
(0, T)xBp, By

n, m—>+oo

And we conclude letting first ¢ go to 0 and then «, e go to 0.

We may now conclude the proof of Theorem 2. Indeed, extracting subsequences
if necessary, we may assume that /'" converges a.e. on (0, 00) x BY x RY. And since
f is 1—1 we immediately see that f" converges a.e. on (0,00)x BN x RYN. The
conclusion of Theorem 2 follows then immediately in view of the bounds (11). [

Remark. With a little more effort, one can modify the above proof to allow the
following condition on a;; replacing (13)

a.e.ze€ RN, ay(z)yn; >0if eSSV, y9-z2=0. (13"

Before proving Theorem 3, we wish to state without proof two consequences of the
method of proof used above. The first one concerns another collision model
(sometimes called Fokker-Planck model) presented for instance in Cercignani
(1988):

QULS) = vile=1JI p™) 4, f+ Ndiv,{(pv—)) [}}, (34)
where 9 > 0, p = [ prvfdv, j = [y fodo, e = [ pv flo]? do.

Then, the bounds (11) are still available because (7), (8) are still valid and the
analogue of (9), (10) is then

EJ'J’ flogfdxdv-{-nJ’ dx{(e—ljlzp‘l)J’ Mdv—szz}=0. (35)
dt RN =Y rY f

2
and (e—lj[2p“1)J lv”—ﬂdv—sz2 =>0a.e.
v

in view of the following

Lemma 4. Let ge H'(R™) be such that [ pvlg|*|v|2 dv < 00. Then,

2
(j |g|2|v—u|2dv)(j |Vg|2dv)>%N2( f |g|2dv), (36)
RN RN RN
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-1
where U= (J |glzvdv)<J |g|2dv) .
»Y ”N

In addition, the equality holds if and only if g = p(2nT)~N/4 e =4"AT for some T > 0, p,
ueR™.

Remarks. (i) This lemma replaces the famous H-theorem for the Boltzmann model.
(ii) It is obviously one form of the Heisenberg uncertainty principle.

Proof. By a simple translation and scaling argument, we may assume without loss
of generality that

leglzvdv=0, leglzlvlzdv=1, jNIVglzdv=1.
R R R

Then, we may maximize [ gv|g|?dv over all functions g satisfying

JNIglzvdv=0, JN|g|2|v|2dv<1, leVgPdvsl.
R R R

The existence of a maximizer g, follows from easy functional analysis con-
siderations. In addition, one can show that

[ Jokirar=1. [ o=t

(again by scaling arguments for instance) and that, by the strong maximum
principle, +g¢, is the ground state of an operator of the form — A+ Av|? for some
A > 0. Therefore, g, = p(2nT) N4 e AT for some T > 0, p€ R such that Np2T' = 1 and
Np?/4T = 1. Hence N%p* =4 and [ pv|g,|>dv = p? = 2/N. O

Then, adapting the proof of Theorem 2, we find the
Theorem 5. The conclusion of Theorem 2 holds for the collision model given by (34).

Another applications of the method of proof of Theorem 2 concerns linear
equations having certain hypoelliptic features (but which are not in general
hypoelliptic). Let ("), be a sequence of smooth solutions of

n 2

5t Vaf " —ay(t,7) Boro,

fr=0, (37)

where a,; € Li,.((0, 00) x RY). We assume that

f" is bounded in Lf,((0, 00) x RZV) if 1 <p < o0

" is bounded in L2, ((0, 00) X RN ) and (38)
loc x,

v

uniformly locally integrable if p = 1

a.e. (t,2)€(0,00) x RY,
ay(t,x)p;m; >0 forall neSVL

and

Then, the method of proof of Theorem 2 yields the following result

Theorem 6. The sequence (f"), is relatively compact in LE((0,0) x R2Y) for 1 <
g<pifp>1landforq=1ifp=1.
Phil. Trans. R. Soc. Lond. A (1994)
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Remarks. (i) If a; is smooth and if p > 1, this result can be deduced from
hypoelliptic theory (see Hormander 1985). Indeed, f* is then uniformly locally
smooth on the open set

w ={(t,,v)€(0, 00) X RN /a,(t, x)n;5; > 0 for all e SV},

In particular, f* is relatively compact in L% (w) and Theorem 6 follows by Holder
inequalities since (39) implies that meas (0°) = 0.

(i) Notice also that f” is not in general smooth nor compact in Lf,.. Indeed,
consider a;(t,x) = |x[*d;;. By a simple scaling argument, it is easy to construct a
sequence of solutions such that |f"|? converges weakly in the sense of measures to a
Dirac mass at x =0, v = 0.

(iii) This result also holds for stationary equations and in fact for more general
operators. However, we will not pursue this direction (by the lack of applications).
Also, one could include other terms in the equation (37) (right-hand sides bounded
in Lj,,, first-order terms, sequences of a;;).

(iv) Even if p =2, the remark (ii) above shows that this type of compactness
phenomena cannot be handled by the H-measures of Tartar (1990) and Gérard
(1991). O

We now conclude this paper with the proof of Theorem 3. We begin with the case
when Be L}(RY x S¥~1). Indeed, by the arguments introduced in DiPerna & Lions
(1989a), one sees that Q@ (f™,f")(1+f™)7', QT (f*.f")(1+f")~' are bounded res-
pectively in L(0, oo ; L*(R2Y)), L'(0,T; L*(RZY,)) for all T'e (0, 0c0) where

Q‘(qo,sv)=f dvy J dw Bepy,
RN SN-—I

Q@) = f dv*f dw Be'py,
RN SN-I
In addition, we have for each K > 1,

1
QU <K@+ b (40)
where D" is bounded in L'(0, co ; L'(R%Y))). The estimate (40) is shown in DiPerna &
Lions (1989a). Therefore, if we set F'§ = 6 'log (1+4f"), observing that we have

oy _ 1 n ¢n
a:""” zfa—wQ(f S

we deduce from the bounds recalled above and (40) for all ¢,s > 0

IO = (f5)F ()] e (R“\;) w(lt—s), (41)

where o is a continuous, non-negative, non-decreasmg function on [0, c0) such that
w(0), and w depends on & but is independent on n. Here and below, we denote, as in
DiPerna & Lions (1989 a), g*(x, v, t) = g(x+vt,v,t) for any function g on [0, 0c0) x R2Y.
Using (11) in the second step of the proof of Theorem 2, we deduce from (41) letting
0 go to 0 that (41) also holds with f} replaced by f. Next, if f* is relatively compact
in L1((0,T) x R2Y,) for some 7' > 0, (f™)* is also relatively compact in L*((0, T') x R2Y)).
And this combined with the fact that (41) holds for (f*)* yields the relative

Phil. Trans. R. Soc. Lond. A (1994) .
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compactness in C([0,T]; L"(R2Y)) of f*. In particular, (f*)*,_,=f"l,_o=/2 is
relatively compact in L'(R2Y)).

We now conclude the proof of Theorem 3 by adapting the above argument. We
consider, instead of f3,f3 , = 0 7'log( 1+8f" (v) for Re(0, c0) and we have

0
(at+o-v)f8R 1+3f” fnfn . (42)

then @ (f",f")(1+9df") 15, (v) is bounded in L®(0,00;L'(R3Y,)). This bound
combined with (40) implies (41) with f} replaced by f} . And letting ¢ go to 0,, R go
to + oo and using (11) (as we sketched above), we recover the fact that (41) hold for
f" and we conclude as above. O
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